Análisis de datos.
Medidas de Tendencia Central
- Media aritmética
- Mediana
- Moda
Medidas De Tendencia Central
Las características globales de un conjunto de datos estadísticos pueden resumirse mediante una serie de cantidades numéricas representativas llamadas parámetros estadísticos. Entre ellas, las medidas de tendencia central, como la media aritmética, la moda o la mediana, ayudan a conocer de forma aproximada el comportamiento de una distribución estadística.
Medidas de centralización
Se llama medidas de posición, tendencia central o centralización a unos valores numéricos en torno a los cuales se agrupan, en mayor o menor medida, los valores de una variable estadística. Estas medidas se conocen también como promedios.
Para que un valor pueda ser considerado promedio, debe cumplirse que esté situado entre el menor y el mayor de la serie y que su cálculo y utilización resulten sencillos en términos matemáticos.
Se distinguen dos clases principales de valores promedio:
- Las medidas de posición centrales: medias (aritmética, geométrica, cuadrática, ponderada), mediana y moda.
- Las medidas de posición no centrales: entre las que destacan especialmente los cuantiles.
Las medidas de centralización son parámetros representativos de distribuciones de frecuencia como las que ilustra la imagen.
Media aritmética
Se define media aritmética de una serie de valores como el resultado producido al sumar todos ellos y dividir la suma por el número total de valores. La media aritmética se expresada como .
Dada una variable x que toma los valores x1, x2, ..., xn, con frecuencias absolutas simbolizadas por f1, f2, ..., fn, la media aritmética de todos estos valores vendrá dada por:
Media ponderada
En algunas series estadísticas, no todos los valores tienen la misma importancia. Entonces, para calcular la media se ponderan dichos valores según su peso, con lo que se obtiene una media ponderada.
Si se tiene una variable con valores x1, x2, ..., xn, a los que se asigna un peso mediante valores numéricos p1, p2, ..., pn, la media ponderada se calculará como sigue:
Mediana
La media aritmética no siempre es representativa de una serie estadística. Para complementarla, se utiliza un valor numérico conocido como mediana o valor central.
Dado un conjunto de valores ordenados, su mediana se define como un valor numérico tal que se encuentra en el centro de la serie, con igual número de valores superiores a él que inferiores. Normalmente, la mediana se expresa como Me.
La mediana es única para cada grupo de valores. Cuando el número de valores ordenados (de mayor a menor, o de menor a mayor) de la serie es impar, la mediana corresponderá al valor que ocupe la posición (n + 1)/2 de la serie. Si el número de valores es par, ninguno de ellos ocupará la posición central. Entonces, se tomará como mediana la media aritmética entre los dos valores centrales.
Determinación de la mediana de una serie de valores.
Moda
En una serie de valores a los que se asocia una frecuencia, se define moda como el valor de la variable que posee una frecuencia mayor que los restantes. La moda se simboliza normalmente por Mo.
Un grupo de valores puede tener varias modas. Una serie de valores con sólo una moda se denomina unimodal; si tiene dos modas, es bimodal, y así sucesivamente.
La mayor parte de las serie de datos muestran una clara tendencia a agruparse alrededor de un cierto punto central. Así pues, dada cualquier serie de datos particular, por lo general es posible seleccionar algún valor o promedio típico para describir toda la serie de datos. Este valor descriptivo típico es una medición de tendencia central o de ubicación.
Cinco tipos de promedios a menudo usados como mediciones de tendencia central. Estos son la media aritmética, la mediana, la moda, el rango medio el eje medio.
La media aritmética
La media aritmética es el promedio o medición de tendencia central de uso más común. Se calcula sumando todas las observaciones de una serie de datos y luego dividiendo el total entre el número de elementos involucrados.
La expresión algebraica puede describirse como:
Para simplificar la notación se usa convencionalmente el término:
donde:
= media aritmética de la muestra
= sumatoria de todos los valores de Xi
La mediana
La mediana es el valor medio de una secuencia ordenada de datos. Si no hay empates, la mitad de las observaciones serán menores y la otra mitad serán mayores. La mediana no se ve afectada por ninguna observación extrema de una serie de datos. Por tanto, siempre que esté presente una observación extrema es apropiado usar la mediana en vez de la media para describir una serie de datos.
Para calcular la mediana de una serie de datos recolectados en su forma sin procesar, primero debemos poner los datos en una clasificación ordenada. Después usamos la fórmula de punto de posicionamiento:
Para encontrar el lugar de la clasificación ordenada que corresponde al valor de la mediana, se sigue una de las dos reglas:
- Si el tamaño de la muestra es un número impar, la mediana se representa mediante el valor numérico correspondiente al punto de posicionamiento, la observación ordenada es (n+1)/2.
- Si el tamaño de la muestra es un número par entonces el punto de posicionamiento cae entre las dos observaciones medias de la clasificación ordenada. La mediana es el promedio de los valores numéricos correspondientes a estas dos observaciones medias.
La moda
La moda o modo es el valor de una serie de datos que aparece con más frecuencia. Se obtiene fácilmente de una clasificación ordenada. A diferencia de la media aritmética, la moda no se ve afectada por la ocurrencia de los valores extremos.
Ejemplo: Los valores siguientes son las calificaciones de un alumno durante todo el año
7; 8; 9; 7; 9; 8; 8; 8; 7; 8
Podemos afirmar entonces que el modo es igual a 8, dado que es el valor que aparece con más frecuencia.
El rango medio
El rango medio es el promedio de las observaciones menores y mayores de una serie de datos.
El rango medio a menudo es usado como una medición de resumen tanto por analistas financieros como por reporteros meteorológicos, puesto que puede proporcionar una medición adecuada, rápida y simple para caracterizar toda una serie de datos, como por ejemplo todo una serie de lecturas registradas de temperatura por horas durante todo un día.
El eje medio
Como última medida de tendencia central, mencionamos al eje medio, que es el promedio del primer y tercer cuartiles de una serie de datos. Es decir:
Eje medio: (Q1 + Q2) / 2
Siendo Q1 y Q2, el primer y segundo cuartil. En conclusión podemos decir que es una medición de resumen usada para zanjar problemas potenciales introducidos por los valores extremos de los datos.
No hay comentarios:
Publicar un comentario