miércoles, 19 de junio de 2019

Estadística. Medidas de Dispersión

Estadística. Contenido 4

Medidas de Dispersión 
para datos no agrupados


  • Rango
  • Desviación media
  • Varianza
  • Desviación estándar o típica

Medidas De Dispersión

Las medidas de tendencia central ofrecen una idea aproximada del comportamiento de una serie estadística. No obstante, no resultan suficientes para expresar sus características: una misma media puede provenir de valores cercanos a la misma o resultar de la confluencia de datos estadísticos enormemente dispares. Para conocer en que grado las medidas de tendencia central son representativas de la serie, se han de complementar con medidas de dispersión como la varianza o la desviación típica.

Concentración y dispersión

Las medidas de centralización ayudan a determinar el «centro de gravedad» de una distribución estadística. Para describir el comportamiento general de la serie se necesita, sin embargo, una información complementaria para saber si los datos están dispersos o agrupados.
Así, las medidas de dispersión pueden definirse como los valores numéricos cuyo objeto es analizar el grado de separación de los valores de una serie estadística con respecto a las medidas de tendencia central consideradas.
Las medidas de dispersión son de dos tipos:
  • Medidas de dispersión absoluta: como recorrido, desviación media, varianza y desviación típica, que se usan en los análisis estadísticos generales.
  • Medidas de dispersión relativa: que determinan la dispersión de la distribución estadística independientemente de las unidades en que se exprese la variable. Se trata de parámetros más técnicos y utilizados en estudios específicos, y entre ellas se encuentran los coeficientes de apertura, el recorrido relativo, el coeficiente de variación (índice de dispersión de Pearson) y el índice de dispersión mediana.

La distribución normal, o campana de Gauss, es una función simétrica (con la media aritmética en el centro de la serie) con un grado de dispersión bajo (la mayoría de los valores están comprendidos dentro del valor de la desviación típica ).

Recorrido

La medida de dispersión más inmediata es el recorrido de la distribución estadística, también llamado rango o amplitud. Dada una serie de valores x1, x2, ..., xn, su recorrido es la diferencia aritmética entre el máximo y el mínimo de estos valores:

Desviación media

Como medida de dispersión más frecuentemente utilizada, la desviación media se define como la media aritmética de los valores absolutos de la desviación de cada valor de la variable con respecto a la media. Su formulación matemática es la siguiente:

Varianza y desviación típica

La desviación media no siempre suministra una idea clara del grado de separación entre los valores de una variable estadística. Para estudios científicos, se prefiere utilizar una pareja de parámetros relacionados que se conocen como varianza y desviación típica.
La varianza se define como el cociente entre la suma de los cuadrados de las desviaciones de los valores de la variable y el número de datos del estudio. Matemáticamente, se expresa como:
Por su parte, la desviación típica, simbolizada por s, se define sencillamente como la raíz cuadrada de la varianza:
Por lo tanto, se tiene que:
La varianza y la desviación típica, cada una con su respectivo valor, se usan indistintamente en los estudios estadísticos.


Medidas de dispersión

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.
Las medidas de dispersión son:

Rango o recorrido

El rango es la diferencia entre el mayor y el menor de los datos de una distribución estadística.

Desviación media

La desviación respecto a la media es la diferencia entre cada valor de la variable estadística y la media aritmética.
Di = x - x
La desviación media es la media aritmética de los valores absolutos de las desviaciones respecto a la media.
La desviación media se representa por signo
desviación media
desviación media

Ejemplo

Calcular la desviación media de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
media
desviación media

Desviación media para datos agrupados

Si los datos vienen agrupados en una tabla de frecuencias, la expresión de la desviación mediaes:
delegación media
desviación media

Ejemplo

Calcular la desviación media de la distribución:
 xifix· fi|x - x||x - x| · fi
[10, 15)12.5337.59.28627.858
[15, 20)17.5587.54.28621.43
[20, 25)22.57157.50.7144.998
[25, 30)27.541105.71422.856
[30, 35)32.526510.17421.428
  21457.5 98.57
media
desviación media

Varianza

La varianza es la media aritmética del cuadrado de las desviaciones respecto a la media de una distribución estadística.
La varianza se representa por signo.
varianzavarianza

Varianza para datos agrupados

varianzavarianza
Para simplificar el cálculo de la varianza vamos o utilizar las siguientes expresiones que son equivalentes a las anteriores.
varianzavarianza

Varianza para datos agrupados

varianzavarianza

Ejercicios de varianza

Calcular la varianza de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
media
varianza

Calcular la varianza de la distribución de la tabla:
 xifixi · fixi2 · fi
[10, 20)15115225
[20, 30)2582005000
[30,40)351035012 250
[40, 50)45940518 225
[50, 6055844024 200
[60,70)65426016 900
[70, 80)75215011 250
  421 82088 050
media
varianza

Propiedades de la varianza

La varianza será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales.
Si a todos los valores de la variable se les suma un número la varianza no varía.
Si todos los valores de la variable se multiplican por un número la varianza queda multiplicada por el cuadrado de dicho número.
Si tenemos varias distribuciones con la misma media y conocemos sus respectivas varianzasse puede calcular la varianza total.
Si todas las muestras tienen el mismo tamaño:
varianzas
Si las muestras tienen distinto tamaño:
varianzas

Observaciones sobre la varianza

La varianza, al igual que la media, es un índice muy sensible a las puntuaciones extremas.
En los casos que no se pueda hallar la media tampoco será posible hallar la varianza.
La varianza no viene expresada en las mismas unidades que los datos, ya que las desviaciones están elevadas al cuadrado.

Desviación típica

La desviación típica es la raíz cuadrada de la varianza.
Es decir, la raíz cuadrada de la media de los cuadrados de las puntuaciones de desviación.
La desviación típica se representa por σ.
de relación típicadesviación

Desviación típica para datos agrupados

desviación típicadesviación
Para simplificar el cálculo vamos o utilizar las siguientes expresiones que son equivalentes a las anteriores.
desviación típicadesviación típica

Desviación típica para datos agrupados

desviación típicadesviación típica

Ejercicios de desviación típica

Calcular la desviación típica de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
media
Desviación típica
Calcular la desviación típica de la distribución de la tabla:
 xifixi · fixi2 · fi
[10, 20)15115225
[20, 30)2582005000
[30,40)351035012 250
[40, 50)45940518 225
[50, 60)55844024 200
[60,70)65426016 900
[70, 80)75215011 250
  421 82088 050
media
desvición típica

Propiedades de la desviación típica

La desviación típica será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales.
Si a todos los valores de la variable se les suma un número la desviación típica no varía.
Si todos los valores de la variable se multiplican por un número la desviación típica queda multiplicada por dicho número.
Si tenemos varias distribuciones con la misma media y conocemos sus respectivas desviaciones típicas se puede calcular la desviación típica total.
Si todas las muestras tienen el mismo tamaño:
desviación típica
Si las muestras tienen distinto tamaño:
desviación típica

Observaciones sobre la desviación típica

La desviación típica, al igual que la media y la varianza, es un índice muy sensible a las puntuaciones extremas.
En los casos que no se pueda hallar la media tampoco será posible hallar la desviación típica.
Cuanta más pequeña sea la desviación típica mayor será la concentración de datosalrededor de la media.



No hay comentarios:

Publicar un comentario